A sketch-based interface for modeling myocardial fiber orientation that considers the layered structure of the ventricles.

نویسندگان

  • Kenshi Takayama
  • Takashi Ashihara
  • Takashi Ijiri
  • Takeo Igarashi
  • Ryo Haraguchi
  • Kazuo Nakazawa
چکیده

We propose a sketch-based interface for modeling the myocardial fiber orientation required in the electrophysiological simulation of the heart, especially the ventricles. The user can create a volumetric vector field that represents the myocardial fiber orientation in two steps. First, a depth field over the three-dimensional (3D) ventricular model is defined to create layers of myocardium. The user can then peel these layers and draw strokes on them to specify the myocardial fiber orientation in each layer. We represent the 3D ventricular model as a tetrahedral mesh and perform Laplacian smoothing over the mesh vertices to interpolate the vector field defined by the user-drawn strokes. Our method also allows the user to perform deformations on volumetric models of myocardial fiber orientation, which is very important for studying heart disease associated with morphological abnormalities. We created several examples of myocardial fiber orientation and applied them to a simplified simulator to demonstrate the effectiveness of our method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sketch-Based Interface for Modeling Myocardial Fiber Orientation

This article proposes a sketch-based interface for modeling muscle fiber orientation of a 3D virtual heart model. Our target was electrophysiological simulation of the heart and fiber orientation is one of the key elements to obtaining reliable simulation results. We designed the interface and algorithm based on the observation that fiber orientation is always parallel to the surface of the hea...

متن کامل

A Sketch-based Interface for Modeling Heart Fiber Orientation

This paper proposes a sketch-based interface for modeling muscle fiber orientation of a 3D virtual heart model. Our current target is electrophysiological simulation of heart and fiber orientation is one of the key elements to obtain faithful simulation results. The interface and algorithm are designed based on the observation that fiber orientation is always parallel to the heart surface. The ...

متن کامل

Stiffness Prediction of Beech Wood Flour Polypropylene Composite by using Proper Fiber Orientation Distribution Function

One of the most famous methods to predict the stiffness of short fiber composites is micromechanical modeling. In this study, a Representative Volume Element (RVE) of a beech wood flour natural composite has been designed and the orientation averaging approach has been utilized to predict its stiffness tensor. The novelty of this work is in finding the proper fiber orientation distribution func...

متن کامل

Impact of Layout Sequence of the Natural and Synthetic Adsorbents in Double-Layered Composites on Improving the Natural Fiber Acoustic Performance Using the Numerical Finite Element Method

Introduction: The acoustic performance of natural fiber adsorbents has been investigated in numerous studies. A part of these materials show a poor adsorption within the frequency range of less than 1000 Hz. In the present study, attempts were made to investigate the effect of layout sequence of double-layered composites consisting of natural and synthetic fibers on improving the acoustic adsor...

متن کامل

Analytical and numerical modeling of erosive projectiles into steel fiber reinforced concrete target

In this paper, modeling of high speed projectiles with different nose shapes, penetrating into steel fiber reinforced concrete is investigated. This is a novel study because it considers the length to diameter ratio of steel fiber as well as projectile length to diameter ratio and volume fraction of fiber used in concrete matrix on the impact resistance of steel fiber reinforced concrete fibers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physiological sciences : JPS

دوره 58 7  شماره 

صفحات  -

تاریخ انتشار 2008